行业资讯

海康工业相机MV-CA013-20GM喷墨字符缺陷检测案例

喷墨字符打印在工业生产中是非常常见的一种打印工艺,由于油墨的质量和喷印表面的影响,打印的内容会存在一定的瑕疵,本案例就是分享如何解决这类瑕疵的检测,这次是用到海康智能工业相机。

项目需求:

某集成商有一个牛奶包装生产日期打印质量的检测需求,内容为检测牛奶包装上的生产日期打印质量,判断是否有打花,缺码,污点的情况,设备根据检测结果,将打印质量不良的包装剔除。

检测对象:

方案设计:

视觉方案

成像方案部分:

海康相机:MV-CA013-20GM 海康镜头:MVL-HF3528M-6MP

光源:MV-LLES-175-30-W 视场范围:60 mm * 40mm

工作距离:350mm 光源距离:180mm

需求难点:

作为检查对象,字符信息实时在变化,位置也不固定,有一定的波动,包装个体之间的差异导致字符的背景也有明暗变化的情况,因此使用传统的缺陷检测算法很难实现

算法实现:

考虑到项目的难点,利用深度学习缺陷检测的方式搭建算法方案,首先通过特征匹配和仿射变换定位字符位置,并将原图裁剪成260*160大小的图片。流程如下:

图像预处理流程

原图 裁剪后的图片

通过图像预处理,将原始图像裁剪成260*160分辨率的小图,一方面可以使得样本的的背景更加简单,较少干扰。同时,低分辨率的样本可以较少算法对硬件的依赖。提升检测效率。模型训练时,选择300张NG的样本和300张OK的样本,保证NG的样本中包含所有缺陷的纹理。具体模型训练的过程略。得到缺陷检测的模型后,进行测试,测试的算法流程如下:

缺陷检测流程

通过测试发现,OK的样本和NG的样本在概率图的呈现形式上有明显的差异,通过blob工具,开启面积和阈值使能,过滤干扰项,达到字符缺陷检测的效果。测试样本集中,OK的样本为800张,NG的样本为400张,OK的全部识别正常,NG的误识别为4张,综合识别率为99.7%。

总结:

在实际的应用环节发现,终端客户对字符缺陷的需求要大于字符识别的需求,实际的喷码过程中,喷码错误的可能性非常低,往往会有设备异常导致的喷码缺陷,这类缺陷是客户需要剔除的,深度学习缺陷检测技术刚好可以应对这类复杂的缺陷检测需求。

***是海康威视旗下的海康机器人HikRobot海康智能读码器/工业相机经销商,供应海康扫描枪ID2000、ID3000、ID5000、ID6000等系列全部型号,海康威视读码器同时为 为电子、物流、FPD显示屏、半导体、汽车制造等领域提供专业机器视觉解决方案,海康工业读码器助力用户快速准确实现工业自动化。

***新留言

我要留言